Vertex Polynomial for the Splitting Graph Of Comb and Crown

E. Ebin Raja Merly

Assistant Professor in Mathematics, Nesamony Memorial Christian College, Marthandam, India.

A.M. Anto

Research scholar in Mathematics, Nesamony Memorial Christian College, Marthandam, India.

Abstract – The vertex polynomial of the graph G = (V, E) is defined as $V(G, x) = \sum_{k=0}^{\Delta(G)} v_k x^k$, where $\Delta(G) = \max\{d(v)/v \in V\}$ and v_k is the number of vertices of degree k. In this paper we derived the vertex polynomial for splitting graph of Comb, Crown, $P_n \odot \overline{K}_{m'}$ $(n \ge 2)$, $C_n \odot \overline{K}_{m'}$ $(n \ge 3)$, their union and their sum.

Index Terms – Comb, Crown, Splitting graph, Vertex Polynomial, Union, Sum.

1. INTRODUCTION

In a graph G = (V, E), we mean a finite undirected, non-trivial graph without loops and multiple edges. The vertex set is denoted by V and the edge set by E. For $v \in V$, d(v) is the number of edges incident with v, the maximum degree of G is defined as $\Delta(G) = \max\{d(v)/v \in V\}$. For terms not defined here, we refer to Frank Harary[3]. For each vertex v of a graph G, take a new vertex v', join v' to all the vertices of G adjacent to v. The graph S(G) thus obtained is called splitting graph of G [2]. The graph G = (V, E) is simply denoted by G. Let G_1 and G_2 be two graphs, the union $G_1 \cup G_2$ is defined to be (V, E) where $V = V_1 \cup V_2$ and $E = E_1 \cup E_2$, the sum $G_1 + G_2$ is defined as $G_1 \cup G_2$ together with all the lines joining points of V_1 to V_2 . The graph obtained by joining a single pendent edge to each vertex of a path is called Crown.

2. VERTEX POLYNOMIAL FOR THE SPLITTING GRAPH OF COMB

Definition: 2.1

The graph obtained by joining a single pendent edge to each vertex of a path is called Comb.

Theorem: 2.2

Let G be a Comb with order 2n, $(n \ge 2)$. The vertex polynomial of S(G) is

 $V(S(G), x) = (n-2)x^{6} + 2x^{4} + (n-2)x^{3} + (n+2)x^{2} + nx, n \ge 2.$

Proof:

Let G be a comb with $2n (n \ge 2)$ vertices. Therefore, S(G) have $4n (n \ge 2)$ vertices. Among 2n vertices of G, n vertices are pendent vertices; among remaining n vertices, n - 2 have degree 3 and 2 vertices have degree 2. In S(G), each new vertex corresponding to each vertex of V has same degree as in V of G and rest of vertices becomes twice the degree, gives the result.

Example: 2.3

Take n = 3 in the above theorem. We have the graph

Here, $V(S(G), x) = x^6 + 2x^4 + x^3 + 5x^2 + 3x$.

Theorem: 2.4

Let G be a Comb with order 2n, $(n \ge 2)$ and $\zeta = S(G) \cup S(G) \cup ... \cup S(G)$ (m times). Then the vertex polynomial is $V(\zeta, x) = m(n-2)x^6 + 2mx^4 + m(n-2)x^3 + m(n+2)x^2 + mnx$, $n \ge 2$, $m \ge 1$.

Proof:

Consider m copies of S(G), here the number of vertices of S(G) increased by m copies but degree of each vertex remains unchanged. Therefore, each coefficient of the vertex polynomial of S(G) multiplied by m gives the result.

Theorem: 2.5

Let G be a Comb with order 2n,
$$(n \ge 2)$$
. The vertex polynomial of mS(G) is $V(mS(\zeta), x) = m(n-2)x^{6+4n(m-1)} + 2mx^{4+4n(m-1)} + m(n-2)x^{3+4n(m-1)} + m(n+2)x^{2+4n(m-1)} + mnx^{1+4n(m-1)}$, $n \ge 2$, $m \ge 1$.

Proof:

In mS(G), each vertex degree of ζ has increased by 4n(m-1) gives the required result.

3. VERTEX POLYNOMIAL FOR THE SPLITTING GRAPH OF CROWN ($C_n \bigcirc K_1$)

Definition: 3.1

Any cycle with pendant edge attached to each vertex is called Crown.

Theorem: 3.2

Let G be a Crown with order 2n, $(n \ge 3)$. Then the vertex polynomial of S(G) is given by V(S(G), x) = nx⁶ + nx³ + nx² + nx, n ≥ 3 .

Proof:

Let G be a Crown with order 2n, $(n \ge 3)$. Therefore, S(G) have 4n $(n \ge 3)$ vertices. Among 2n vertices of G, n vertices are pendant vertices; remaining n vertices have degree 3. In S(G), each new vertex corresponding to each vertex of V has same degree as in V of G and rest of vertices becomes twice the degree, gives the result.

Example: 3.3

ISSN: 2454-6410

Take n = 3 in the above theorem. We have the graph

Here,
$$V(S(G), x) = 3x^6 + 3x^3 + 3x^2 + 3x$$
.

Theorem: 3.4

Let G be a Crown with order 2n, $(n \ge 3)$. The vertex polynomial of $\zeta = S(G) \cup S(G) \cup ... \cup S(G) (m \text{ times})$ is $V(\zeta, x) = nmx^6 + nmx^3 + nmx^2 + nmx$,

 $n \ge 3, m \ge 1.$

Theorem: 3.5

Let G be a Crown with order 2n, $(n \ge 3)$. The vertex polynomial of mS(G) is given by $V(mS(G), x) = nmx^{6+4n(m-1)} + nmx^{3+4n(m-1)} + nmx^{2+4n(m-1)} + nmx^{1+4n(m-1)}$, $n \ge 3$, $m \ge 1$.

4. VERTEX POLYNOMIAL FOR THE SPLITTING GRAPH OF $P_n \odot \overline{K}_m$, $(n \ge 2)$

Theorem: 4.1

Let G be $P_n \odot \overline{K}_m$. Then the vertex polynomial of S(G) is given by $V(S(G), x) = (n - 2)x^{2(m+2)} + 2x^{2(m+1)} + nmx^2 + (n - 2)x^{m+2} + 2x^{m+1} + nmx, n \ge 2, m \ge 1.$

Proof:

Let G be $P_n \odot \overline{K}_m$. We can observe that, n - 2 vertices have degree m + 2, 2 vertices have degree m + 1 and nm vertices have degree 1.

In S(G), each new vertex corresponding to each vertex of V has same degree as in V of G and rest of vertices becomes twice the degree shows the required result.

Example: 4.2

Consider the Graph $P_2 \odot \overline{K}_2$. Then the corresponding graph is illustrated as follows;

Figure 3

Here, $V(S(G), x) = 2x^6 + 2x^3 + 4x^2 + 4x$.

Theorem: 4.3

Let G be $P_n \odot \overline{K}_m$. Then the vertex polynomial of $\zeta = S(G) \cup S(G) \cup ... \cup S(G)(k \text{ times})$ is $V(\zeta, x) = (n - 2)kx^{2(m+2)} + 2kx^{2(m+1)} + nmkx^2 + (n - 2)kx^{m+2} + 2kx^{m+1} + nmkx, n \ge 2, m \ge 1.$

Theorem: 4.4

Let G be $P_n \odot \overline{K}_m$. Then the vertex polynomial of kS(G) is given by V(S(G), x)

$$= (n-2)x^{2(m+2)+2n(k-1)(m+1)} + 2x^{2(m+1)+2n(k-1)(m+1)} + nmx^{2+2n(k-1)(m+1)} + (n - 2)x^{m+2+2n(k-1)(m+1)} + 2x^{m+1+2n(k-1)(m+1)} + nmx^{1+2n(k-1)(m+1)}, n \ge 2, m \ge 1$$

5. VERTEX POLYNOMIAL FOR THE SPLITTING GRAPH OF $C_n \odot \overline{K}_m$, $(n \ge 3)$

Theorem: 5.1

Let G be $C_n \odot \overline{K}_m$, $(n \ge 3)$. Then the vertex polynomial of S(G) is given by V(S(G), x) = nx^{2(m+2)} + nmx^2 + nx^{m+2} + nmx, $n \ge 3$.

Proof:

Let G be $C_n \odot \overline{K}_m$. We can observe that, n vertices have degree m + 2 and nm vertices have degree 1. In S(G), each new vertex corresponding to each vertex of V has same degree as in V of G and rest of vertices becomes twice the degree shows the required result.

Example: 5.2

Consider the Graph $C_3 \odot \overline{K}_1$. Then the corresponding graph is depicted as follows;

Here, $V(S(G), x) = 3x^6 + 3x^3 + 3x^2 + 3x$.

Theorem: 5.3

Let G be $C_n \odot \overline{K}_m$, $(n \ge 3)$. The vertex polynomial of $\zeta = S(G) \cup S(G) \cup ... \cup S(G)$ (k times) is $V(\zeta, x) = nkx^{2(m+2)} + nmkx^2 + nkx^{m+2} + nmkx$, $n \ge 3$.

Theorem: 5.4

Let G be $C_n \odot \overline{K}_m$, $(n \ge 3)$. Then the vertex polynomial of kS(G) is given by $V(S(G), x) = nkx^{2(m+2)+2n(k-1)(1+m)} +$

 $\begin{array}{l} nmkx^{2+2n(k-1)(1+m)} + nkx^{m+2+2n(k-1)(1+m)} + \\ nmkx^{1+2n(k-1)(1+m)}, \ n \ge 3. \end{array}$

REFERENCES

- E. Ebin Raja Merly, A.M.Anto,"On Vertex Polynomial of Comb and Crown" International Journal of Advanced and Innovative (2278-7844) / # 53 / Volume 5 Issue 7
- [2] E. Sampathkumar, H.B. Walikar, "On splitting graph of a graph", J.Karnatak Univ. Sci., 25 and 26 (Combined) (1980-81), 13-16.
- [3] Frank Harary, 1872,"*Graph Theory*", Addition Wesly Publishing Company.
- [4] Gary Chartrant and Ping Zank, "*Introduction to Graph Theory*", TATA McGRAW-HILL EDITION.
- [5] J.Devaraj, E.Sukumaran "On Vertex Polynomial", International J. of Math.sci & Engg Appls(IJMESA) Vol. 6 No. 1 (January, 2012), pp. 371-380
- [6] J.A.Gallian, 2010, A dynamic Survey of graph labeling. The electronic Journal of Combinatories17#DS6.
- [7] Zhiba Chen, "Integral Sum Graphs from Identification", Discrete Math. 181 (1998), 77-90.