Vertex Polynomial for the Splitting Graph Of Comb and Crown

E. Ebin Raja Merly
Assistant Professor in Mathematics, Nesamony Memorial Christian College, Marthandam, India.
A.M. Anto
Research scholar in Mathematics, Nesamony Memorial Christian College, Marthandam, India.

Abstract - The vertex polynomial of the graph $G=(V, E)$ is defined as $V(G, x)=\sum_{k=0}^{\Delta(G)} \mathbf{v}_{\mathbf{k}} \mathbf{x}^{\mathbf{k}}$, where $\Delta(\mathbf{G})=\max \{\mathbf{d}(\mathbf{v}) / \mathbf{v} \in V\}$ and v_{k} is the number of vertices of degree k. In this paper we derived the vertex polynomial for splitting graph of Comb, Crown, $\quad P_{n} \odot \bar{K}_{m},(\mathbf{n} \geqslant 2), C_{n} \odot \bar{K}_{m},(n \geqslant 3)$, their union and their sum.

Index Terms - Comb, Crown, Splitting graph, Vertex Polynomial, Union, Sum.

1. INTRODUCTION

In a graph $G=(V, E)$, we mean a finite undirected, non-trivial graph without loops and multiple edges. The vertex set is denoted by V and the edge set by E . For $\mathrm{v} \in \mathrm{V}, \mathrm{d}(\mathrm{v})$ is the number of edges incident with v, the maximum degree of G is defined as $\Delta(G)=\max \{d(v) / v \in V\}$. For terms not defined here, we refer to Frank Harary[3]. For each vertex v of a graph G, take a new vertex v^{\prime}, join v^{\prime} to all the vertices of G adjacent to v . The graph $S(G)$ thus obtained is called splitting graph of G [2]. The graph $G=(V, E)$ is simply denoted by G. Let G_{1} and G_{2} be two graphs, the union $G_{1} \cup G_{2}$ is defined to be (V, E) where $V=$ $V_{1} \cup V_{2}$ and $E=E_{1} \cup E_{2}$, the sum $G_{1}+G_{2}$ is defined as $G_{1} \cup$ G_{2} together with all the lines joining points of V_{1} to V_{2}. The graph obtained by joining a single pendent edge to each vertex of a path is called Comb. Any cycle with pendant edge attached to each vertex is called Crown.

2. VERTEX POLYNOMIAL FOR THE SPLITTING GRAPH OF COMB

Definition: 2.1

The graph obtained by joining a single pendent edge to each vertex of a path is called Comb.

Theorem: 2.2
Let G be a Comb with order $2 \mathrm{n},(\mathrm{n} \geqslant 2)$. The vertex polynomial of $S(G)$ is
$\mathrm{V}(\mathrm{S}(\mathrm{G}), \mathrm{x})=(\mathrm{n}-2) \mathrm{x}^{6}+2 \mathrm{x}^{4}+(\mathrm{n}-2) \mathrm{x}^{3}+(\mathrm{n}+2) \mathrm{x}^{2}+$ $n x, n \geqslant 2$.

Proof:
Let G be a comb with $2 \mathrm{n}(\mathrm{n} \geqslant 2)$ vertices. Therefore, $\mathrm{S}(\mathrm{G})$ have $4 \mathrm{n}(\mathrm{n} \geqslant 2)$ vertices. Among 2 n vertices of G, n vertices are pendent vertices; among remaining n vertices, $n-$ 2 have degree 3 and 2 vertices have degree 2 . In $S(G)$, each new vertex corresponding to each vertex of V has same degree as in V of G and rest of vertices becomes twice the degree, gives the result.

Example: 2.3
Take $\mathrm{n}=3$ in the above theorem. We have the graph

Figure 1
Here, $\mathrm{V}(\mathrm{S}(\mathrm{G}), \mathrm{x})=\mathrm{x}^{6}+2 \mathrm{x}^{4}+\mathrm{x}^{3}+5 \mathrm{x}^{2}+3 \mathrm{x}$.
Theorem: 2.4
Let G be a Comb with order $2 \mathrm{n},(\mathrm{n} \geqslant 2)$ and $\zeta=$ $\mathrm{S}(\mathrm{G}) \mathrm{US}(\mathrm{G}) \cup \ldots \mathrm{US}(\mathrm{G})$ (m times). Then the vertex polynomial is $V(\zeta, x)=m(n-2) x^{6}+2 \mathrm{mx}^{4}+m(n-$ 2) $\mathrm{x}^{3}+\mathrm{m}(\mathrm{n}+2) \mathrm{x}^{2}+\mathrm{mnx}, \mathrm{n} \geqslant 2, \mathrm{~m} \geqslant 1$.

Proof:
Consider m copies of $S(G)$, here the number of vertices of $S(G)$ increased by m copies but degree of each vertex remains unchanged. Therefore, each coefficient of the vertex polynomial of $\mathrm{S}(\mathrm{G})$ multiplied by m gives the result.

Theorem: 2.5
Let G be a Comb with order $2 n,(n \geqslant 2)$. The vertex polynomial of $\mathrm{mS}(\mathrm{G})$ is $\mathrm{V}(\mathrm{mS}(\zeta), \mathrm{x})=\mathrm{m}(\mathrm{n}-$ 2) $x^{6+4 n(m-1)}+2 m x^{4+4 n(m-1)}+m(n-2) x^{3+4 n(m-1)}+$ $\mathrm{m}(\mathrm{n}+2) \mathrm{x}^{2+4 \mathrm{n}(\mathrm{m}-1)}+\mathrm{mnx}^{1+4 \mathrm{n}(\mathrm{m}-1)}, \mathrm{n} \geqslant 2, \mathrm{~m} \geqslant 1$.

Proof:
In $m S(G)$, each vertex degree of ζ has increased by $4 n(m-1)$ gives the required result.

3. VERTEX POLYNOMIAL FOR THE SPLITTING GRAPH OF CROWN ($\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}$)

Definition: 3.1
Any cycle with pendant edge attached to each vertex is called Crown.

Theorem: 3.2
Let G be a Crown with order $2 \mathrm{n},(\mathrm{n} \geqslant 3)$. Then the vertex polynomial of $S(G)$ is given by $V(S(G), x)=n x^{6}+n x^{3}+$ $n x^{2}+n x, n \geqslant 3$.

Proof:
Let G be a Crown with order $2 \mathrm{n},(\mathrm{n} \geqslant 3)$. Therefore, $\mathrm{S}(\mathrm{G})$ have $4 n(n \geqslant 3)$ vertices. Among $2 n$ vertices of G, n vertices are pendant vertices; remaining n vertices have degree 3 . In $S(G)$, each new vertex corresponding to each vertex of V has same degree as in V of G and rest of vertices becomes twice the degree, gives the result.

Example: 3.3
Take $\mathrm{n}=3$ in the above theorem. We have the graph

Figure 2

Here, $V(S(G), x)=3 x^{6}+3 x^{3}+3 x^{2}+3 x$.
Theorem: 3.4
Let G be a Crown with order $2 n,(n \geqslant 3)$. The vertex polynomial of $\zeta=S(G) \cup S(G) \cup \ldots \cup S(G)(m$ times) is $V(\zeta, x)=n m x^{6}+n m x^{3}+n m x^{2}+n m x$,

$$
\mathrm{n} \geqslant 3, \mathrm{~m} \geqslant 1
$$

Theorem: 3.5
Let G be a Crown with order $2 n,(n \geqslant 3)$. The vertex polynomial of $m S(G)$ is given by $V(m S(G), x)=$ $n \mathrm{nxx}^{6+4 \mathrm{n}(\mathrm{m}-1)}+\mathrm{nmx}^{3+4 \mathrm{n}(\mathrm{m}-1)}+\mathrm{nmx}^{2+4 \mathrm{n}(\mathrm{m}-1)}+$ $n \mathrm{mx}^{1+4 \mathrm{n}(\mathrm{m}-1)}, \mathrm{n} \geqslant 3, \mathrm{~m} \geqslant 1$.

4. VERTEX POLYNOMIAL FOR THE SPLITTING
 GRAPH OF $\mathrm{P}_{\mathrm{n}} \odot \overline{\mathrm{K}}_{\mathrm{m}},(\mathrm{n} \geqslant 2)$

Theorem: 4.1
Let G be $P_{n} \odot \bar{K}_{m}$. Then the vertex polynomial of $S(G)$ is given by $V(S(G), x)=(n-2) x^{2(m+2)}+2 x^{2(m+1)}+n m x^{2}+(n-$ 2) $\mathrm{x}^{\mathrm{m}+2}+2 \mathrm{x}^{\mathrm{m}+1}+\mathrm{nmx}, \mathrm{n} \geqslant 2, \mathrm{~m} \geqslant 1$.

Proof:
Let G be $P_{n} \odot \bar{K}_{m}$. We can observe that, $n-2$ vertices have degree $m+2,2$ vertices have degree $m+1$ and $n m$ vertices have degree 1 .

In $S(G)$, each new vertex corresponding to each vertex of V has same degree as in V of G and rest of vertices becomes twice the degree shows the required result.
Example: 4.2
Consider the Graph $\mathrm{P}_{2} \odot \overline{\mathrm{~K}}_{2}$. Then the corresponding graph is illustrated as follows;

Figure 3
Here, $V(S(G), x)=2 x^{6}+2 x^{3}+4 x^{2}+4 x$.
Theorem: 4.3
Let G be $P_{n} \odot \bar{K}_{m}$. Then the vertex polynomial of $\zeta=$ $S(G) \cup S(G) \cup \ldots \cup S(G)(k$ times $) \quad$ is $V(\zeta, x)=(n-$ 2) $\mathrm{kx}^{2(\mathrm{~m}+2)}+2 \mathrm{kx}^{2(\mathrm{~m}+1)}+\mathrm{nmkx}^{2}+(\mathrm{n}-2) \mathrm{kx}^{\mathrm{m}+2}+$ $2 \mathrm{kx}^{\mathrm{m}+1}+\mathrm{nmkx}, \mathrm{n} \geqslant 2, \mathrm{~m} \geqslant 1$.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Theorem: 4.4
Let G be $P_{n} \odot \bar{K}_{m}$. Then the vertex polynomial of $k S(G)$ is given by $V(S(G), x)$

$$
\begin{array}{rlr}
=(\mathrm{n}-2) \mathrm{x}^{2(\mathrm{~m}+2)} & +2 \mathrm{n}(\mathrm{k}-1)(\mathrm{m}+1) & +2 \mathrm{x}^{2(\mathrm{~m}+1)+2 \mathrm{n}(\mathrm{k}-1)(\mathrm{m}+1)} \\
& +\mathrm{nmx}^{2+2 \mathrm{n}(\mathrm{k}-1)(\mathrm{m}+1)} \quad+(\mathrm{n} \\
& -2) \mathrm{x}^{\mathrm{m}+2+2 \mathrm{n}(\mathrm{k}-1)(\mathrm{m}+1)} & \\
& +2 \mathrm{x}^{\mathrm{m}+1+2 \mathrm{n}(\mathrm{k}-1)(\mathrm{m}+1)} & \\
& +\mathrm{nmx} \mathrm{x}^{1+2 \mathrm{n}(\mathrm{k}-1)(\mathrm{m}+1)}, \mathrm{n} \geqslant 2, \quad \mathrm{~m} \geqslant 1 .
\end{array}
$$

5. VERTEX POLYNOMIAL FOR THE SPLITTING GRAPH OF $C_{n} \odot \bar{K}_{m},(n \geqslant 3)$

Theorem: 5.1
Let G be $C_{n} \odot \bar{K}_{m},(n \geqslant 3)$. Then the vertex polynomial of $\mathrm{S}(\mathrm{G})$ is given by $\mathrm{V}(\mathrm{S}(\mathrm{G}), \mathrm{x})=\mathrm{nx}^{2(\mathrm{~m}+2)}+\mathrm{nmx}^{2}+\mathrm{nx} \mathrm{m}^{\mathrm{m}+2}+$ $\mathrm{nmx}, \mathrm{n} \geqslant 3$.

Proof:
Let G be $\mathrm{C}_{\mathrm{n}} \odot \overline{\mathrm{K}}_{\mathrm{m}}$. We can observe that, n vertices have degree $m+2$ and $n m$ vertices have degree 1. In $S(G)$, each new vertex corresponding to each vertex of V has same degree as in V of G and rest of vertices becomes twice the degree shows the required result.

Example: 5.2
Consider the Graph $\mathrm{C}_{3} \odot \overline{\mathrm{~K}}_{1}$. Then the corresponding graph is depicted as follows;

Figure 4
Here, $V(S(G), x)=3 x^{6}+3 x^{3}+3 x^{2}+3 x$.
Theorem: 5.3
Let G be $\mathrm{C}_{\mathrm{n}} \odot \overline{\mathrm{K}}_{\mathrm{m}},(\mathrm{n} \geqslant 3)$. The vertex polynomial of $\zeta=$ $S(G) \cup S(G) \cup \ldots \cup S(G)(k$ times $)$ is $V(\zeta, x)=n k x^{2(m+2)}+$ $n m k x^{2}+n k x{ }^{m+2}+n m k x, n \geqslant 3$.

Theorem: 5.4

Let	$\mathrm{G} \quad$ be $\mathrm{C}_{\mathrm{n}} \odot \overline{\mathrm{K}}_{\mathrm{m}},(\mathrm{n} \geqslant 3)$.	Then the vertex
polynomial	of $\mathrm{kS}(\mathrm{G}) \quad$ is	given by
$\mathrm{V}(\mathrm{S}(\mathrm{G}), \mathrm{x})=$	$\mathrm{nkx}^{2(\mathrm{~m}+2)+2 \mathrm{n}(\mathrm{k}-1)(1+\mathrm{m})}+$	

$\mathrm{nmkx}^{2+2 \mathrm{n}(\mathrm{k}-1)(1+\mathrm{m})}+\mathrm{nkx}^{\mathrm{m}+2+2 \mathrm{n}(\mathrm{k}-1)(1+\mathrm{m})}+$ $n m k x^{1+2 n(k-1)(1+m)}, n \geqslant 3$.

REFERENCES

[1] E. Ebin Raja Merly, A.M.Anto,"On Vertex Polynomial of Comb and Crown" International Journal of Advanced and Innovative Research (2278-7844) / \# 53 / Volume 5 Issue 7
[2] E. Sampathkumar, H.B. Walikar, "On splitting graph of a graph", J.Karnatak Univ. Sci., 25 and 26 (Combined) (1980-81), 13-16.
[3] Frank Harary, 1872,"Graph Theory", Addition - Wesly Publishing Company.
[4] Gary Chartrant and Ping Zank, "Introduction to Graph Theory", TATA McGRAW-HILL EDITION.
[5] J.Devaraj, E.Sukumaran "On Vertex Polynomial", International J. of Math.sci \& Engg Appls(IJMESA) Vol. 6 No. 1 (January, 2012), pp. 371380
[6] J.A.Gallian, 2010, A dynamic Survey of graph labeling. The electronic Journal of Combinatories17\#DS6 .
[7] Zhiba Chen, "Integral Sum Graphs from Identification", Discrete Math. 181 (1998), 77-90.

